Palladium-Hydroquinone Catalysed Electrochemical 1,4-Oxidation of Conjugated Dienes

Jan-E. Bäckvall* and Adolf Gogoll

Department of Organic Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

The mediator system palladium(II)—hydroquinone was shown to catalyse the anodic oxidation of cyclohexa-1,3-diene in acetic acid to produce selectively either *trans*- or *cis*-1,4-diacetoxycyclohex-2-ene (1) depending on the conditions. depending on the conditions.

We have recently developed a number of palladium catalysed 1,4-oxidations of conjugated dienes (Scheme 1). 1,2 In all these oxidations p-benzoquinone plays an important role as both an oxidant and as a ligand. The benzoquinone was found to have a unique ability to direct the reaction towards a high selectivity, and attempts to replace it with oxidants having an

equal or higher oxidation potential led to either no reaction or a less selective reaction. \(^{1a,b}\) One way to replace the benzo-quinone as the ultimate oxidant and still make use of its favourable properties is to use it in catalytic amounts and reoxidize the hydroquinone formed in each cycle.\(^{1,3}\) Since hydroquinone-benzoquinone has a well defined electro-

Table 1. Electrochemical oxidations of cyclohexa-1,3-diene using a Pd-hydroquinone catalytic system.^a

Entry	Anode	[Pd(OAc) ₂] /mм	LiCl /mм	Time /h	Turnover on Pd ^b	% Yield of (1) ^c	% Current yield ^c	Ratio trans : cis ^d
1	Pt	5	_	12	15	53(69)	74(96)	91:9
2	Pt	31		25	26	61(74)	67(81)	86:14
3	Pt	31		48	46	39(49)	67(85)	87:13
4	Ti/MnO ₂ e	14		7.5	6.1	65(64)	48(47)	89:11
5	Ti/MnO ₂ f	30		24	30	58(72)	50(62)	86:14
6	Pt	19	75	29	7.3	34(39)	40(46)	10:90
7	Pt	5	26	37	6	29(41)	61(63)	11:89
8	Ti/MnO2f,g	46	_	3.5	5.6	49	40	83:17

^a The reactions were performed in acetic acid using $Pd(OAc)_2$ and hydroquinone as catalysts. Lithium acetate concentrations of 1 M were used except in entries 6 and 7 where 0.7 and 2.5 M were used respectively. Hydroquinone concentration was $5.6 \times [Pd(OAc)_2]$ except entries 1 {1.8 $\times [Pd(OAc)_2]$ } and 7 {4 $\times [Pd(OAc)_2]$ }. Unless otherwise noted a divided cell was used. ^b Turnovers based on g.c. yields. ^c Refers to isolated yields; figures in parentheses refer to g.c. yields. ^d Determined by ¹H n.m.r. and h.p.l.c. ^c An undivided cell was used. ^f Without potential control. ^g Performed in HOAc-H₂O 1:1.

Scheme 1. Palladium catalysed 1,4-oxidation of conjugated dienes.

anode:
$$Pd^{II}$$
 $Y^- + X^ Pd^{II}$
 $Y^- + X^ Pd^{II}$
 $Y^- + X^ Y^- + Y^ Y^- + X^ Y^- + Y^ Y^$

chemistry⁴, it occurred to us that anodic oxidation would be suitable for the reoxidation of hydroquinone in these palladium catalysed reactions. Here we report our preliminary results on an electrochemical 1,4-oxidation of conjugated dienes mediated by PdII—hydroquinone.

Scheme 2

The principle for the electrochemical process used is shown in Scheme 2. The hydroquinone is used as a mediator⁵ for the electron transfer. In this way an efficient reaction takes place at anodic potentials of <1 V [νs . standard calomel electrode (S.C.E.)]. At the cathode, protons are reduced to hydrogen.

$$+2HOAc \longrightarrow AcO \longrightarrow OAc + 2H^{+} + 2e$$

Scheme 3. 1,4-Diacetoxylation of cyclohexa-1,3-diene.

$$+ 2H^{+} + AcO^{-} + CI^{-} \longrightarrow CI \longrightarrow OAc$$
(2)

Scheme 4. 1,4-Acetoxychlorination of cyclohexa-1,3-diene. *Reagents*: cat. Pd(OAc)₂, cat. hydroquinone, LiCl, LiOAc, LiClO₄, HOAc, anodic oxidation.

The experiments were performed in acetic acid with LiClO₄ as supporting electrolyte using Pd(OAc)₂ and hydroquinone as catalysts. Lithium acetate was added in all experiments. All model oxidations were carried out on cyclohexa-1,3-diene. We first tried to use an undivided cell with a platinum anode and a steel cathode. This led to conversion, but the current yield was typically <30% and furthermore, palladium was deposited on the cathode thus removing the catalyst. We therefore divided the cell into anodic and cathodic compartments using a G3-filter. This considerably improved the current yield to ca. 90%.

Results from electrochemical oxidations of cyclohexa-1,3-diene using the Pd-hydroquinone catalytic system are given in Table 1. Catalysing the electron transfer by the redox couple hydroquinone/benzoquinone makes it possible to keep the anodic potential very low.† In entries 1—4 and 6,7 the anodic potential was kept between 0.7 and 0.8 V (vs. S.C.E.). This resulted in a mild and selective reaction. Although the current density at these potentials was modest, experiments on a preparative scale were performed without any problems. For example, in the experiments in entries 2 and 3, which were run in a 20 ml volume using a 40 cm² platinum anode, the amounts of diacetate produced were 2.7 and 4.5 g respectively. The current density in both cases was 1.4—1.5 mA/cm². As can be seen from entry 3, turnover numbers of up to 46 can be obtained.

[†] Current–potential curves showed that the half-wave potential for the hydroquinone oxidation (at a Pt anode) is +0.9 V vs. S.C.E., whereas the half-wave potential for the direct oxidation of the π -allyl complex is +1.1 V vs. S.C.E.

In an attempt to replace the platinum anode with a less expensive material we tried the Ti/MnO_2 anode.⁶ Interestingly, this anode gave an almost 50% current yield in an undivided cell when a steel wire with a small active area was used as cathode. In a divided cell with a constant cell voltage of 30 V (which gave an anode potential of 1—1.5 V νs . S.C.E.) a comparable result to that of entry 2 was obtained. The current density was 4 mA/cm² and 4.4 g of diacetate were produced in a 20 ml volume.

The electrochemical oxidation also worked in the presence of chloride ions (entries 6 and 7, Table 1). This is of synthetic importance since chloride ligands are known to have a drastic effect on the stereochemical outcome of the reaction. 1b The use of catalytic amounts of lithium chloride afforded the cis-diacetate as the major product, with a cis-trans selectivity of 90:10. This is a slightly lower selectivity than that obtained with chemical oxidation.‡ In the presence of catalytic amounts of LiCl the current density dropped significantly.§

It is known that the 1,4-diacetoxylation changes to a 1,4-acetoxychlorination if the chloride ion concentration is further increased. We therefore performed an electrochemical oxidation of cyclohexa-1,3-diene at a much higher chloride concentration. This led to a selective formation of (2) in 46% isolated yield (cis: trans = 86:14) (Scheme 4).

It is likely that the Ti/MnO₂ electrode used in the oxidations has a catalytic surface consisting of the redox couple MnO₂/Mn₂O₃ (2MnO₂ + 2H⁺ + 2e⁻ \rightleftharpoons Mn₂O₃ + H₂O). The very active MnO₂ is expected to oxidize hydroquinone to *p*-benzo-

quinone and the Mn_2O_3 formed on the surface would be electrochemically reoxidized to $MnO_2.$ Thus, the system would constitute another example of 'triple catalysis' involving the redox catalysts MnO_2/Mn_2O_3 –benzoquinone/hydroquinone– $Pd^{II}/Pd^0.$

We thank the Swedish Natural Science Research Council for financial support and the 'Deutsche Forschungsgemeinschaft' for a fellowship (A. G.).

Received, 10th April 1987; Com. 474

References

- (a) J. E. Bäckvall, J. E. Nyström, and R. E. Nordberg, J. Am. Chem. Soc., 1985, 107, 3676; (b) J. E. Bäckvall, S. E. Byström, and R. E. Nordberg, J. Org. Chem., 1984, 49, 4619; (c) J. E. Bäckvall, J. Vågberg and R. E. Nordberg, Tetrahedron Lett., 1984, 25, 2717.
- 2 J. E. Bäckvall in 'Organic Synthesis: an Interdisciplinary Challenge,' eds. J. Streith, H. Prinzbach, and G. Schill, Blackwell, Oxford, 1985, p. 69.
- 3 J. E. Bäckvall, A. K. Awasthi, and Z. D. Renko, J. Am. Chem. Soc., in the press.
- 4 The standard electrode potential (E^0) for hydroquinone/benzoquinone is 0.71 V in benzene and 0.65 V in acetic acid: W. M. Clark 'Oxidation-Reduction Potentials in Organic Systems,' Williams and Wilkins, Baltimore, 1960.
- (a) E. Steckhahn, Angew. Chem., 1986, 98, 681; Angew. Chem., Int. Ed. Engl., 1986, 25, 683; (b) K. H. Grosse-Brinkaus, E. Steckhahn, and W. Schmidt, Acta Chem. Scand., Ser. B., 1983, 37, 499; (c) H. Wendt, Electrochim. Acta, 1984, 29, 1513.
- 6 D. L. Lewis, C. R. Franks, and B. A. Schenker, Belg. Pat. 849,888 (CL. C25B); Chem. Abstr., 1978, 88, 112557 k; E. Kalinovskii, V. L. Moskalevich, O. A. Khan, and N. I. Ful'man, Tsvetn. Metall., 1974, 16 Sov. J. Non-Ferrous Met. (Engl. Transl.), 1974, 17; Chem. Abstr., 1974, 81, 20121r; cf. ref. 5(c).
- 7 For a related example of 'triple catalysis,' see ref. 3. For an example where three redox catalysts are used to obtain electron transport through membranes, see: J. J. Grimaldi, S. Boileau, and J. M. Lehn, *Nature*, 1977, **265**, 229.

 $[\]ddagger$ In the $MnO_2-benzoquinone$ oxidized diacetoxylation in the presence of catalytic amounts of chloride a cis-trans ratio of 96:4 was obtained.

[§] In the presence of catalytic amounts of chloride the palladium catalysed cycle is slower than in the chloride free case. This results in a much lower steady state concentration of hydroquinone, to which the current is proportional.